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A theoretically based corresponding-states principle previously developed for 
the equation of state of hard-convex-body fluids is extended to rigid linear 
homonuclear fused-hard-sphere fluids. Effective volumes and shapes are intro- 
duced in order to account for the nonconvexity of the molecules. The excess 
compressibility factor, reduced by means of a parameter which can be deter- 
mined analytically, is a common function of the effective packing fraction. The 
analytical expression for the function can be obtained from the equation of state 
of the hard-sphere fluid. Existing simulation data for diatomics, triatomics and 
tetraatomics show excellent agreement with the corresponding-states principle. 
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1. I N T R O D U C T I O N  

In its simplest form, the corresponding-states principle (CSP), introduced 
more than a century ago by van der Waals, establishes that, for all fluids, 
the equation of state has a common form when expressed in terms of the 
variables reduced by suitable parameters. Originally the reducing 
parameters were the critical constants, and these have also been used 
frequently since then. Thus, the reduced variables are defined as Pr = PIPe, 
Tr= T/Tc, and Vr= V/Vc, and the universal equation of state can be 
expressed in the form 

pr=f(Tr, Vr) (1) 
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Alternatively, if the molecules are assumed to interact by means of a poten- 
tial function depending on two parameters such as the Lennard-Jones 
potential: 

(0"~ |2 __ (0"~ 6 ] 
q~(r)=4e[kr/ \ r /  J (2) 

the potential parameters a and e can be used as reducing quantities. The 
reduced variables are now p* = pff3/8, T*  = kT/8,  and V* = V/Na 3, where 
k is the Boltzmann constant and N the number of molecules. 

Of course, other definitions for the reducing quantities are possible. In 
any case, the principle is applicable not only to the equation of state, but 
also to other thermodynamic properties. Experimental data show that, 
when plotted in terms of the reduced variables, such properties lie on a 
single curve for many classical substances with nonpolar and nearly spheri- 
cal molecules. If molecules deviate appreciably from spherical shape, it is 
necessary to generalize the principle by introducing an additional 
parameter which depends on the shape of the molecule such as the acentric 
factor co, defined by [ I, 2] 

co = --log p r -  1 (3) 

where Pr is the reduced vapor pressure at Tr=0.7.  The CSP is then 
expressed in the more general form 

p~=f(T .  V,, co) (4) 

For  polar molecules, another parameter, related to the reduced dipole 
moment /1" = / ~ / ~ ,  must also be introduced. Thus, the more com- 
plicated the molecules considered, the greater the number of parameters 
needed to express the CSP. 

In order to increase the usefulness of the CSP for the equation of state 
of fluids, one of the unsolved questions is the derivation of a simple analyti- 
cal expression for the function f if only for relatively simple molecular 
fluids. In this sense, it seems worthwhile to start by dealing with hard-body 
fluids, for which there is a considerable amount of simulation data suitable 
to test the accuracy of a CSP. Moreover, their well-defined shape and the 
absence of attractive forces between the molecules mean that they are 
simpler to deal with, from a theoretical viewpoint, than real fluids. 

With this in mind, we extend to fluids consisting of linear 
homonuclear fused hard spheres a CSP previously developed [3]  for 
hard-convex-body (HCB) fluids. 
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2. CORRESPONDING-STATES PRINCIPLE FOR THE 
EQUATION OF STATE OF HARD-BODY FLUIDS 

In a previous paper [3] ,  we derived, for the equation of state of 
hard-convex-body (HCB) fluids, a CSP of the form 

zHCa= f ( y ,  oQ (5) 

where Z = p V / N k T  is the compressibility factor, y=pVm is the packing 
fraction for a fluid of density p consisting of molecules of volume Ore, and 
cc = RS/3vm is the shape factor of the molecules which have a mean radius 
of curvature R and surface S. 

Starting from the virial theorem for one-component HCB fluids [4] ,  
we showed that the excess compressibility factor Z - 1  reduced by the 
shape factor ~ is very nearly a common function of the packing fraction y. 
This function is the excess compressibility factor for the hard-sphere fluid, 
which can be obtained from the very accurate equation of state of 
Carnahan-Starling [5] ,  so that in the final form, the CSP for HCB fluids 
is expressed as 

Z HcB-1  4 y - 2 y  2 
- ( l _ y ) 3  (6) 

Furthermore, it was shown [ 3] that existing simulation data for HCB 
fluids are in very good agreement with this form of the CSP. 

For  fused-hard-sphere (FHS) fluids, an expression of the virial 
theorem similar to that for HCB fluids has been derived [6] .  Thus, we can 
arrive at Eq. (6) for the CSP for linear homonuclear FHS fluids following 
the same procedure as that used to derive the CSP for HCB fluids in [3] .  
However, we must take into account that since FHS are not convex 
molecules, the volume that a molecule excludes to any point of another 
molecule is greater than the molecular volume [ 7 ], as illustrated in Fig. 1, 
and this affects the pressure. Thus, we must introduce the "effective 

er instead of the molecular volume Vm, the effective molecular volume" v m 
packing fraction yet= pv~ instead of the packing fraction y, and conse- 
quently, an effective shape factor eer instead of the shape factor 0c. 

Then, the corresponding-states principle must be generalized in the 
form 

Z -  1 4y~r-  2y~r 
~er - (1 -- yet) 3 (7) 

which, for HCB fluids, with ~ = 0%r and Vm = V~, reduces to Eq. (6). In the 
form of Eq. (7), the CSP is in fact applicable to any hard-body fluid, 
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Fig. 1. The shaded  area i l lustrates  the 

difference between effective vo lume  and 
real vo lume for h o m o n u c l e a r  diatomics .  

provided that we are able to determine the corresponding effective values 
of molecular volume and shape. 

The effective molecular volume of an n-sites linear homonuclear FHS 
body can be expressed [ 7] in the form 

ef __ ~O'3 
v m - ---~- [ 1 + ( n -  I)(3L --L3/2 -- 3h0)] (8) 

where h = (1-L2/4)  ~/2, 0 =  sin-l(L/2), and L is the distance between the 
centers of two adjacent spheres of the molecule, all distances being 
expressed as units of the diameter a of the spheres. 

The effective shape factor can be obtained [-7] from 

( Ov~/Oa )( O2v~/Oaz) (9) 
0~ef - -  ef 

U m 

where, from Eq. (8), 

Ov~ = 2 l + ( n - 1 )  L - 3hO 4h J J (10) 

and 

0~2 =rccr l + ( n - - 1 ) 2 L - 3 h O  -3L20--~-z +l--~2+32h3jjL3 L40"~] (11) 

3. RESULTS AND DISCUSSION 

According to Eq. (7), the excess compressibility factor, reduced by the 
effective shape factor ~er, must be a universal function of the effective 
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packing fraction Yef. Thus, in order to test the accuracy of the principle, we 
have plotted the left-hand side of Eq. (7) as a function of the effective 
packing fraction for several linear homonuclear FHS fluids. For Z we 
have taken the simulation data [8-12] for diatomics, triatomics, and tetra- 
atomics with different values of the center-to-center distance L. The values 
of v~, vm (from which we can obtain y~r = yv~/v~), and ~r  corresponding 
to the different shapes considered are listed in Table I. Results are shown 
in Figs. 2-4, from which it is clear that all the fluids considered obey very 
accurately the proposed corresponding-states principle. 

In summary, with the generalization introduced here, the two- 
parameter CSP derived in Ref. 3 can in principle be applied to any 
hard-body fluid for which we can obtain the effective volume and shape, 
except perhaps for very elongated molecules. Of course, the problem of 
determining the parameters from geometrical considerations becomes 
increasingly difficult as the shape of the molecule becomes more com- 
plicated. Thus, an expression equivalent to Eq. (8) has not been derived 
yet, for example, for unequal fused hard spheres, although we are currently 
working in this direction. 

Table I. Molecular Volumes, Effective Molecular Volumes, and Effective Shape Factors for 
the FHS Fluids Considered" 

Homonuclear  diatomics 

L 0.2 0.4 0.6 0.8 1.0 
vm 0.6786 0.8210 0.9383 1.0179 1.0472 
t ,a 0.6791 0.8253 0.9530 1.0538 1.1203 
c%f 1.0177 1.0660 I. 1434 1.2549 1.4140 

Linear bomonuclear  triatomics 

L 0.4559 0.8 1.0 
or, 1.1901 1.5122 1.5708 
v~ 1.2028 1.5839 1.7170 
~f 1.2119 1.5529 1,8546 

L 1.0 
v m 2.0944 
v~ 2.3138 
cca 2.3013 

Linear homonuclear  tetraatomics 

All volumes are expressed in units of  tr 3, where a is the diameter of  a sphere. L is in units 
of a. 
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Fig. 2. Reduced excess compressibility factor for hard homonuclear 
diatomics (n = 2 )  as a function of the effective packing fraction Y~r. 
Points: simulation data from Ref. 8 for L = 0 . 2  (circles), L = 0 . 4  
(triangles), and L = 1.0 (diamonds). Solid line: Eq. (8). 
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As in Fig. 2 for center-to-center distances of L = 0.4 (circles) 

and L =0.8 (triangles). 
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Fig. 4. As in Fig. 2 for hard linear homonuclear triatomics (n = 3) 
and tetraatomics (n = 4). Points: simulation data for n = 3, L = 0.4559 
(circles), from Ref. 9; n = 3 ,  L = 0 . 8  (triangles), from Ref. 10; n = 3 ,  
L =  1.0 (squares), from Ref. 11; and n = 4 ,  L =  1.0 (diamonds), from 
Ref. 12. 
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